The polymer physics of single DNA confined in nanochannels.
نویسندگان
چکیده
In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.
منابع مشابه
Statics and dynamics of single DNA molecules confined in nanochannels.
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the polymer physics.
متن کاملCompression and free expansion of single DNA molecules in nanochannels.
We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically driving them into porelike constrictions inside the nanochannels. When the electric field was turne...
متن کاملThe dynamics of genomic-length DNA molecules in 100-nm channels
We show that genomic-length DNA molecules imaged in nanochannels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA molecules confined in the channels, and th...
متن کاملScaling regimes of a semiflexible polymer in a rectangular channel.
We derive scaling relations for the extension statistics and the confinement free energy for a semiflexible polymer confined to a channel with a rectangular cross section. Our motivation is recent numerical results [Gupta et al., J. Chem. Phys. 140, 214901 (2014)] indicating that extensional fluctuations are quite different in rectangular channels compared to square channels. Our results are of...
متن کاملScaling theory of DNA confined in nanochannels and nanoslits.
A scaling analysis is presented of the statistics of long DNA confined in nanochannels and nanoslits. It is argued that there are several regimes in between the de Gennes and Odijk limits introduced long ago. The DNA chain folds back on itself giving rise to a global persistence length that may be very large owing to entropic deflection. Moreover, there is an orientational excluded-volume effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in colloid and interface science
دوره 232 شماره
صفحات -
تاریخ انتشار 2016